Multiplication Matrices and Ideals of Projective Dimension Zero
نویسنده
چکیده
We introduce the concept of multiplication matrices for ideals of projective dimension zero. We discuss various applications and in particular, we give a new algorithm to compute the variety of an ideal of projective dimension zero.
منابع مشابه
A characterization of finitely generated multiplication modules
Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...
متن کاملLocally Cyclic Projective Modules
Let R be a commutative ring with identity and M an R–module. If M is either locally cyclic projective or faithful multiplication then M is locally either zero or isomorphic to R. We investigate locally cyclic projective modules and the properties they have in common with faithful multiplication modules. Our main tool is the trace ideal. We see that the module structure of a locally cyclic proje...
متن کاملFree Resolutions and Sparse Determinantal Ideals
A sparse generic matrix is a matrix whose entries are distinct variables and zeros. Such matrices were studied by Giusti and Merle who computed some invariants of their ideals of maximal minors. In this paper we extend these results by computing a minimal free resolution for all such sparse determinantal ideals. We do so by introducing a technique for pruning minimal free resolutions when a sub...
متن کاملOn Modules of Finite Projective Dimension
We address two aspects of finitely generated modules of finite projective dimension over local rings and their connection in between: embeddability and grade of order ideals of minimal generators of syzygies. We provide a solution of the embeddability problem and prove important reductions and special cases of the order ideal conjecture. In particular we derive that in any local ring R of mixed...
متن کاملCOHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION
In this paper we use "ring changed'' Gorenstein homologicaldimensions to define Cohen-Macaulay injective, projective and flatdimensions. For doing this we use the amalgamated duplication of thebase ring with semi-dualizing ideals. Among other results, we prove that finiteness of these new dimensions characterizes Cohen-Macaulay rings with dualizing ideals.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematics in Computer Science
دوره 6 شماره
صفحات -
تاریخ انتشار 2012